
High-performance computing
– technological trends and programming challenges –

Markus Rampp

Max Planck Computing and Data Facility (MPCDF)

HPC applications group

Topics

where we are – technologically - in scientific high-performance computing (HPC)

where we are heading for: technological evolution and programming challenges
● extreme parallelism
● heterogeneous hardware
● hardware reliability

… with some practical notes, hints and opinions

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Introduction

About the Max Planck Computing and Data Facility (MPCDF)

● HPC and data center of the Max Planck Society, a publicly funded organization for basic research O(1B €/y)

● formerly known as the RZG, located at the research campus in Garching near Munich, Germany

● MPCDF operates a Petaflop-class supercomputer and numerous mid-range clusters

HPC applications group provides high-level support for the development, optimization, analysis and
visualization of HPC applications … + technology watch

original contributions and long-term support for optimization and porting of HPC codes
developed in the Max Planck Society, e.g.

● FHI-aims, OCTOPUS, S/PHI/nX (materials and bio science), ELPA (eigensolver library)

● GENE, SOLPS, GPEC, VMEC (plasma physics/fusion research)

● VERTEX, GOEMHD3, MagIC (astrophysics, geophysics), NSCOUETTE (comp. fluid dynamics)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Processor-technology evolution

“We show that, in the context of Moore's
Law, overall productivity can be increased
for large enough computations by `slacking'
or waiting for some period of time before
purchasing a computer and beginning the
calculation.”

… those days are over ...

when ? → since around 2005
why ? → power limitations
what's next ? → exascale
how to prepare ? → be brave …
… and don't mourne the “good old days”

… exciting times are ahead !

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Processor-technology evolution

Moore's law

● from 60 devices (1965) to billions of devices (2010) per chip

● background:

● Moore's law as a self-fulfilling prophecy

● Dennard scaling: V~L, A~L => P~L2 => P/A~const.
(miniaturization at constant power density, currently 14nm)

● P~f3 => CPU clock frequency leveled off at ~ 3 GHz (2005)

=> computing gets power limited

=> the dawn of the multicore era

multiple processors (“cores”) on a chip, not faster cores

=> “free lunch” is over (H. Sutter 2005: The free lunch is over. A
fundamental turn toward concurrency in software)

"The number of transistors and resistors on a chip doubles every 18 months."
(Intel co-founder Gordon Moore, 1965)

=> performance of computers, applications ???

http://cpudb.stanford.edu

note the dominance of Intel chips since ~2005

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Processor-technology evolution

single-threaded “free lunch” (-2005)

multi core (2005-)

het. core (2009-)

Trends

● Multicore ('big', out-of-order cores, latency
optimized)

● Manycore, GPU ('little'/in-order cores,
throughput optimized)

● heterogeneous nodes (different flavours of
cores)

Drivers:

● technology: energy-efficiency, power
density, ...

● economics: commoditization (mobile devices,
gaming, cloud, …)

Predictions:
● towards the end of Moore's law (era of diminishing returns):

14% / year → 8nm (cf. Dark silicon and the end of multicore scaling, Esmaeilzahde et al. ISCA 2011)

from: H. Sutter “Welcome to the jungle”

=> Moore's law currently holds in its original formulation, but not in the pre-2005
interpretation (“CPU speed doubles every 18 months”)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

HPC trends

The Top 500 list of supercomputers (based on HPL benchmark)

from: Highlights of the 44th TOP500 List (E. Strohmaier, SC'14, New Orleans)

notes:

HPL traces evolution of peak
floating point performance
(resp. technology and
economics), rather than
“sustained” application
performance (which really
matters)

HPL benchmarks dense linear
algebra (BLAS3)

Top500 race resulted in highly
platform-optimized linear
algebra libraries (BLAS,
LAPACK, ScaLAPACK)

smartphone

laptop/PC

6-8 years

F
lo

p/
s:

 F
lo

at
in

g
po

in
t o

pe
ra

tio
ns

 p
er

 s
ec

on
d

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

HPC trends

The Top 500 list of supercomputers (based on HPL benchmark)

Highlights of the 44th TOP500 List (E. Strohmaier, SC'14, New Orleans)

notes:

● moderate performance
increase per core

● steady performance
increase per node
(socket)

● typical architecture:

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

HPC trends

… where we are:

Hardware

MPG Hydra, a typical Petaflops-class x86_64 HPC cluster in Europe
(cf. SuperMUC, CURIE, Hermite, ...):

● 4200 compute nodes (~ 80000 cores, 260 TB RAM)

● 700 GPU accelerators (2 PCI cards per node)

● InfiniBand network (FDR 14 x4: 5.8 GB/s, 5 μs)

● Power: ~ 1MW

Applications:

● FORTRAN, C, C++, few GPU/MIC

● plain MPI, some hybrid MPI/OpenMP

● typical job size: 1000...10000 cores

● typical time of individual jobs: n x 24h

● top-dogs:

FHI-aims*, GENE*, NAMD, FLASH, GROMACS, NECI*,
PENCIL, LAMMPS, PLUTO, VERTEX*, VASP, OCTOPUS*,
MAGIC*, … (*: actively developed in the MPG)

(reflects the operational policies of the machine, not the scalability of the codes!)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

HPC trends

Systems 2011 2012 2015 2018-2022 change
2022/”today”

System Peak
[PF]

2 25 200 1000 O(1000)

Power [MW] 6 6-20 15-50 20-80 O(10)

System
Memory [PB]

0.3 0.3-0.5 5 32-64 O(100)

GB RAM/Core 0.5-4 0.5-2 0.2-1 0.1-0.5 O(0.1)

Node Perf.
[GFlop/s]

125 160-1000 500-7000 1000-10000 O(10)-O(1000)

Cores/Node 12 16-32 100-1000 1000-10000 O(100)-O(1000)

Node memory
BW [GB/s]

40 70 100-1000 400-4000 O(100)

Number of
nodes

20000 10.000-
100.000

5000-50.000 100.000-
1.000.000

O(10)-O(100)

Total
concurrency

~200000 O(106) O(107) O(109) O(10.000)

MTTI days days O(1 day) O(<1 day) O(0.1)

source: DARPA exascale computing study (reproduced from EESI report, slightly updated)

… where we are heading for:

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

HPC trends

US project CORAL

● upcoming “pre-exascale” systems in 2017/2018 (~ 300 PFlop/s, 10MW)

● 2 systems (SUMMIT, SIERRA) based on 2x IBM Power9 CPU (10%)+ 6x Nvidia Volta GPU
(90%)

● only 3400 nodes!, 40TFlop/s/node

● “exascale is done from the hardware perspective” (J. Sexton, IBM, at SC'14, New Orleans)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

HPC trends

First massive manycore system: Trinity @NERSC (2015)

● CRAY Aurora (Intel's Knights Hill)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Motivations

… so what?

→ today's supercomputers are tomorrows commodity clusters

→ there seems no convenient way forward (beyond keeping the status quo in application performance)

→ competition aspects: the resources are simply there!

→ “trickle down” of technology (much quoted) and knowledge transfer, e.g. SIMD vectorization:

… stunt machines
… relevant for my research ?
… “1000 cores is enough for everybody” ?

SSE (4-way SIMD)

Intel Xeon NH (“commodity” CPU)

AVX (8-way SIMD) Intel Xeon Phi (“petascale” tech.)

AVX 256 (16-way SIMD)

Intel Xeon SB (“commodity” CPU)

Intel Xeon Phi (“exascale” tech.)

Intel Xeon SKL (“commodity” CPU)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Programming challenges

Challenges for applications: “... the Good, the Bad, and the Ugly ...”

1) extreme concurrency and the “memory wall”

→can probably be handled by hierarchical parallelism

MPI + X , X Є {OpenMP, OpenACC, CUDA, …} ?

→algorithms need to scale (even more)

→stagnating core-performance forces applications into a strong scaling scenario

2) heterogeneous nodes

→ likely: a mix of 'big' (Xeon like, OoO) and 'little' (MIC/GPU-like, InO) cores

→ memory hierarchy: towards a single address space

but: data locality is key ! → will “high-level” approaches like OpenACC save us
the day???

3) hardware reliability

→ hard and soft errors will be common for every job

→ towards “fault-tolerant” applications

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Programming challenges (1)

Challenges for applications: “... the Good ...” (?)

1) extreme concurrency and the “memory wall”

→can probably be handled by hierarchical parallelism

MPI + X , X Є {OpenMP, OpenACC, CUDA, …} ?

→algorithms need to scale (even more)

→stagnating core-performance forces applications into a strong scaling scenario

2) heterogeneous nodes

→ likely: a mix of 'big' (Xeon like, OoO) and 'little' (MIC/GPU-like, InO) cores

→ memory hierarchy: towards a single address space

but: data locality is key ! → will “high-level” approaches like OpenACC save us
the day???

3) hardware reliability

→ hard and soft errors will be common for every job

→ towards “fault-tolerant” applications

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

The curse of Amdahl's law
● recall: parallel speedup on n cores = 1/(s+(1-s)/n)

where s = runtime share of serial code parts

=> speedup < min(1/s,n)

● 1000 cores (threads): requires s < 0.1%

● 10000 cores (threads): requires s < 0.01%

● 100000 cores (threads): requires s < 0.001%

→ are we completely lost? …

→ strong scaling (fixed problem size): time stepping/iterative algorithms

● serial runtime per time step: O(1 s) per time step

● O(107) timesteps => serial runtime ~ 3000 h

desired speedup ~ 1000 => “parallelize away” everything which is > 1 ms

→latency, overhead (OpenMP, MPI,...) ~ 10 μs => still O.K.

→ weak scaling (problem size increases with compute resources): sounds like a “weak” justification
but has great relevance … are our simulations numerically converged already ?

→ ensemble computing: a typical justification of HPC vendors/providers … how scientifically useful
are single “hero” runs compared to parameter studies at 10% of the size of the machine ?

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

S
p

ee
d

u
p

1 2 4 8

16

32

64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Number of Processors

Amdahl’s Law

Parallel Portion
50%
75%
90%
95%

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

The “memory wall”
The memory wall:
● memory performance evolution [GB/s] lags behind floating-point performance [GFlop/s]:

from >8 Byte/Flop (vector machines) to 1/8 Byte/Flop (current hardware)

● use algorithmic intensity, AI [Flops/B], to classify algorithm (kernels) and relate to hardware limits

examples (“double precision” = 8 Bytes/word):

● x(i)=a(i)+c*b(i) → AI=2/3

● r(i)=x(i)**2+y(i)**2 → AI=3/2

● DGEMV → AI ~ 2

● DGEMM → AI ~ n

● FFT → AI ~ log(n)

practical and caveats:

● AI is not additive
● AI depends on implementation (e.g. cache)
→ measurement: AI=(Flops/s)/(Bytes/s)
● Flop/s counters broken in Intel server CPUs:

SandyBridge, IvyBridge, Broadwell, …?

(e.g. J. Treibig's blog at http://likwid-tools.blogspot.de/2012/02/intel-sandybridge-and-counting-flops.html)

hardware limits

DGEMM

DGEMV

stencil

FFT

sparse LA

(S. Williams et al. Roofline: an insightful visual performance model for multicore architectures, Comm. ACM, 2009)

optimize implementation
(SIMD, OpenMP, ...)

optimize algorithm

R < min(R
FP

,AI*R
Mem

)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Implications

Implications of modern system architectures:

● a widening gap between nominal (“peak”) and sustained (“real”) application performance
→ from >50% peak (vector computers) to <10% peak (current hardware)

● main reasons: memory (→ per-core performance), parallelism (→ overall performance), I/O
(never quoted in benchmarks)

Per-core-performance evolution
“in the field” (2001-2014)

● application performance per core:
4x (DEISA/PRACE)

● peak performance per core:
20x (top500.org)

● cf. peak performance per system:
~2000x (Moore's law, Top500)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Programming

Programming models: manage parallelism on multiple levels (“how to tame the beast”)

Current:

● FORTRAN, C, C++ (+compiler hints for SIMD vectorization: core level)

● OpenMP, pthreads (thread parallelism: node level)

● MPI (inter -and intra- node parallelism: cluster level)

● CUDA, OpenACC (accelerators)

● issues: understanding and expressing memory locality, thread affinity, node-level performance

Towards exascale:

● best guess: “MPI + X”

● X= OpenMP and/or OpenACC + FORTRAN or C/C++

● alternatives: co-array FORTRAN (standard, communication built into the language, coexistence with MPI) ?

=> the basic tools are already there

cause or consequence ?

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Hybrid parallelization

Example:

● standard domain decomposition
with halo-exchange

● explicit message passing (MPI)

Plain MPI

Hybrid: e.g. MPI + OpenMP or MPI + MPI (shared memory)Advantages:

● fewer MPI-ranks: * 1/cores per node
(can be very beneficial for all-to-all type
messaging)

● fewer but larger messages
→ reduce latency

● smaller surface/volume ~
communication/computation
(for contemplation: surface/volume in
higher dimensions, e.g. 6D phase space ?)

● smaller buffer size
● sharing of common data (e.g. EOS

table, …)
● mitigate load-imbalances within domain

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Hybrid parallelization: GOEMHD3

Example (GOEMHD3, w/ J. Skala, J. Buechner): 2D domain decomposition of a 3D Cartesian grid
(explicit MHD code)

SIMD,
OpenMP

● time-explicit MHD code (simple stencil)
● avoids 3D decomposition (or: enables a “simple” 2D decomp. to scale up by 10x...20x)
● surface-to-volume ratio (=communication/computation) decreases
● message size increases
● requires high threading parallel efficiency (close to ideal: 10 per CPU)
● 2000 MPI tasks vs 20000 MPI tasks

OpenMP

Illustration: www.2decomp.org

MPI-Communication
(halo exchange)

GOEMHD3 scaling on Hydra

plain MPI
(Skala et al.: The 3D MHD code GOEMHD3 astrophysical plasmas with large-Reynolds-numbers
to appear in A&A 2015)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

A classical 2D domain decomposition in real space

● Individual (θ,Φ)-“rays” are weakly coupled
(by approximation)

● hybrid MPI/OpenMP parallelization
● CPU-node: max 1 core per angular zone
=> excellent parallel scaling
(1o resolution → 180x360 zones → max 64k cores)

=> but: OpenMP parallelism already exploited
on the coarse-grained level

● momentum-space: lots of fine-grained
parallelism: requires nested OpenMP

=> offload to GPU

Hybrid parallelization: VERTEX

T0

T2 T3

T1

Pn
CPU node

phase-space coordinates

Example (VERTEX, w/ H.-Th. Janka, A. Marek, et al.): 2D domain decomposition of a 3D Cartesian
grid (neutrino radiation hydrodynamics)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Hybrid parallelization: VERTEX

VERTEX on HPC clusters:

0.25 Pflop/s on 131.000 cores (SuperMUC@LRZ)
=> VERTEX runs at ~ 10% of the nominal peak performance
(Marek et al.: Towards Petaflops Capability of the VERTEX Supernova Code, Adv. Par. Computing, 2014)

successful GPU-port (local physics): ~ 2x speedup (socket-to-socket comparison)
(Dannert et al.: Porting Large HPC Applications to GPU Clusters: The Codes GENE and VERTEX, Adv. Par. Computing, 2014)

evolution of “legacy” codes is possible
VERTEX started as a serial vector code
(NEC SX-4) in 1997

access to “stunt machines” has been
 invaluable for preparing production
 projects (at 1/10 of #cores)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Hybrid parallelization: VERTEX

Notes based on personal history with VERTEX:

● 1997 (started development): 1 GFlop/s (NEC SX, serial)

● 2000: 16 cores standard (OpenMP), end of the vector era

● 2000: first MPI parallelization (with help of RZG)

● 2003: few 100 cores standard production runs
(MPI+OpenMP) → dreaming of TFlop/s

● 2006: few 1000 cores standard production runs →
dreaming of PFlop/s

● 2013: successfully ported to GPUs → 2x speedup
(failure on Xeon Phi)

● 2014: PFlop/s capability demonstrated, running production
on 10000's of cores

● 2015: improved strong scaling w/ nested OpenMP

● … still at least on par with scientific competitors

should I really look into this OpenMP thing ?
→ … for the time being let's not tell the supervisor

this MPI stuff is horribly complex, should
a phycisist really be bothered with an explicit

communication library (“high-level” language?)
→ computing center forced and supported us ...

how relevant are such benchmark runs?
production runs on 16k cores. 100k cores
are not available/stable anyway, …
→ essential for preparing the code for
next-gen. production runs (remaining
serial parts, bottlenecks, I/O)

=> Exascale is not a “sonic barrier”, be brave and just do it (others have done it before and will do it)

=> gradual code evolution is possible

… GPU efforts driven by computing center

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Programming challenges (2)

Challenges for applications: “... the Bad ...” (?)

1) extreme concurrency and the “memory wall”

→can probably be handled by hierarchical parallelism

MPI + X , X Є {OpenMP, OpenACC, CUDA, …} ?

→algorithms need to scale (even more)

→stagnating core-performance forces applications into a strong scaling scenario

2) heterogeneous nodes

→ likely: a mix of 'big' (Xeon like) and 'little' (MIC/GPU-like) cores

→ memory hierarchy: towards a single address space

but: data locality is key ! → will “high-level” approaches like OpenACC save us
the day???

3) hardware reliability

→ hard and soft errors will be common for every job

→ towards “fault-tolerant” applications

ISSS-12, Prague, Jul 5, 2015

GPU and many-core computing

A view from the top (today's GPUs, many-core MIC processors):

● accelerator “cards” for standard cluster nodes (connected via PCIe)

● many (~50...500) “lightweight” cores (~ 1 GHz)

● high thread concurrency, fast (local) memories

Programming paradigms (today):

● use CPU for program control, communication and maximum single-thread performance

● “offload” data-parallel parts of computation to accelerator for maximum throughput performance

● requires heterogeneous programming & load-balancing, careful assessment of “speedups”

System architecture:

● currently: x86 “Linux-clusters” with nodes comprising

● 2 CPUs (8...16 cores)

● 2 accelerator cards (GPU, MIC)

● future:

● GPU/CPU with unified memory (OpenPower, Nvlink)

● “host-less” MICs (Intel Knights Landing, Knights Hill, ...)

~6 GB/s

~30 GB/s

~6 GB/sXeon E5-2680v2@2.8 GHz
0.25TFlop/s (DP)
32 GB RAM, 40 GB/s

K20x
1.3 TFlop/s (DP)
6 GB RAM, 250 GB/s

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

GPU and many-core computing

 Programming GPUs:
● CUDA → low level, C only (note: PGI provides CUDA-FORTRAN)
● OpenACC, OpenMP → high-level, directive-based just maturing
● today: discrete memory → coarse granularity
● to come: unified memory Nvlink (OpenPower)

Programming Many core (Intel Xeon Phi):
● OpenMP, compiler directives

Experiences and observations

● programming for GPU and many-core is not easy

● heterogeneous programming (the need to utilize both the CPU and the GPU) is even harder
→ dynamically balancing CPU and GPU workload can be a huge challenge for complex codes

● future “host-less” systems are expected to alleviate the burden of heterogeneous programming

● low-level, proprietary programming models like CUDA appear problematic for scientific HPC (sustainability:
10k...100k lines of code, dozens of person years, FORTRAN, …) → high-level models: OpenACC, OpenMP

● exploiting SIMT and SIMD parallelism in our algorithms is crucial for reasons of energy-efficiency (GPU or
many-core, but also for the CPU)

● realistic application speedups: 1.5x … 3x (node with accelerators vs. node without accelerator)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

GPU and many-core computing

Challenges and opportunities

2x...3x speedups (time to solution) appear competitive for complex HPC codes, but:

● do not enable qualitatively new science objectives right now

● sustainability ? (10k ...100k LoC)

● regular CPUs (Xeon) still do a very good job, further performance increases (?)

Don't expect a convenient way forward (cf. pre-exascale systems ~2018)

● OpenPower (Power CPUs, Nvidia VOLTA, Nvlink), SUMMIT @ORNL https://www.olcf.ornl.gov/summit/

● ManyIntegratedCore (KNL, KNH) AURORA@ANL http://aurora.alcf.anl.gov/

● recall: with current (CPU) technology 1 PFlop/s * 1y ~ 1 MW y ~ 1M € => 1 EFlop/s with 1 GW ???

when to start and how?
OpenMP, SIMD → start now (immediate benefits on CPU)
GPUs → explore OpenACC (PGI, CRAY, gcc)
code development, refactoring → start now (strategy!)

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Programming challenges (3)

Challenges for applications: “... and the Ugly ...” (!!!)

1) extreme concurrency and the “memory wall”

→can probably be handled by hierarchical parallelism

MPI + X , X Є {OpenMP, OpenACC, CUDA, …} ?

→algorithms need to scale (even more)

→stagnating core-performance forces applications into a strong scaling scenario

2) heterogeneous nodes

→ likely: a mix of 'big' (Xeon like) and 'little' (MIC/GPU-like) cores

→ memory hierarchy: towards a single address space

but: data locality is key ! → will “high-level” approaches like OpenACC save us
the day???

3) hardware reliability

→ hard and soft errors will be (are) common for every (large) batch job

→ towards “fault-tolerant” applications

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Hardware failures

Estimates (based on present-day numbers):

● Pnode: probability for a single node to fail during 24h

● Nnode: number of nodes for a batch job

● Pjob(N,P): probability for a 24h job running on N nodes to crash

Pjob(Nnode=1000,Pnode=10-4) = 1-(1-0.0001)1000 ~10%

Pjob(Nnode= 500,Pnode=5*10-4) = 1-(1-0.0005)500 ~22%

Pjob(Nnode=1000,Pnode=5*10-4) = 1-(1-0.0005)1000 ~39%

Measures (basic):

● regular application checkpoints to disk, restart on failure

● current: (10...30 GB/s) → Tread/write CP ~ 2000s for a 64 TB dump on 1000 nodes

● upcoming: NVRAM (I/O “burst buffer”) technologies (Intel, CRAY, …)

● optimal checkpoint interval T to minimize “waste” ≈TCP/T+T/TMTBF (Young 1974, Dally 2004):

T=(2*(TMTBF-(Tdown+Tread CP))*Twrite CP)
1/2 (Aupy et al., J.Par. Distrib. Comp., 2013)

(M. Snir et al. Addressing failures in exascale computing, 2012 Park City USA)

is this a problem in
reality at all ?

https://www.olcf.ornl.gov/summit/
http://aurora.alcf.anl.gov/

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Hardware failures

Measures (advanced, includes issue of soft errors):

● redundant calculations with checkpoints (local memory), replication or (approximate) reconstruction of data

● ABFT: algorithm-based fault tolerance

resilient programs (adaptive scheduling, master-worker scenarios: job level, MPI level, iterative solvers,
ensembles, sparse grids, …, …)

→ ongoing research in computer science, application development and HPC technology

Programmer's tools (no convenient – transparent – solutions on the horizon):

● Open-MPI prototype (http://fault-tolerance.org/) → standardization efforts: "MPI-next"

● user directed, and communicator-driven fault tolerance → notification of the application (ULFM)

● coordinated and uncoordinated process checkpoint and restart

● data reliability and network fault tolerance

● GASPI, Co-Array Fortran, ...

● how to implement this, e.g. in a standard domain decomposition scheme ?

promising attempts, e.g.:
● D. Pflüger et al. Lecture Notes in Computer Science Volume 8806, 2014, pp 565-576
● A. Md Mohsin et al., HPCS 2015

● F. Capello et al. Toward exascale resilience: 2014 update, Supercomputing frontiers & innovations, 2014
● M. Snir et al. Addressing failures in exascale computing, 2013, http://www.mcs.anl.gov/papers/P5022-0913.pdf
● ...

when to start and how?
… depends ...

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Software engineering
Standard techniques (cf. softwarecarpentry.org)

● source code management/version control

git, subversion, …

● static checks, use different compilers!, forcheck, ...
(cf. www.polyhedron.org)

● run-time checks (compiler options, valgrind,
marmot/must, debuggers, ...)

● unit tests: verification and validation (of results), code
coverage, performance verification

● code refactoring (e.g. Fortran77 → Fortran90 →
Fortran2003, MPI 1 → … → MPI 3.1)

● take advantage of type checking, modularization,
language evolution, ...

● hint: check implementation status, feature
completeness first!

Towards “continuous integration”

tools and frameworks: Jenkins, build-bot, git, gcov[r], …

● commit hooks, automated builds, notifications, ...

● test-driven development (turn bugs into test cases)

● automated unit tests for V&V and code coverage

● “release” management, issue tracker, ...

Why bother in this context?
→ (unfortunately) not a matter of course in the field
● ever increasing complexity of software/codes
● team development
● multiple platforms (hardware and software environment)
● performance of computers, applications ???
● large runs are expensive

OoM estimate for a 24h run @ 1 Petaflop/s:
(nominal! → 50 Teraflop/s sustained):
10 M€/5y (hardware) + 1 M€/1y (el. power) =
= 3 M€/y ~ 10k€/24h

● the value of your time/career ?

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Software engineering
Standard techniques (cf. softwarecarpentry.org)

● source code management/version control

git, subversion, …

● static checks, use different compilers!, forcheck, ...
(cf. www.polyhedron.org)

● run-time checks (compiler options, valgrind,
marmot/must, debuggers, ...)

● unit tests: verification and validation (of results), code
coverage, performance verification

● code refactoring (e.g. Fortran77 → Fortran90 →
Fortran2003, MPI 1 → … → MPI 3.1)

● take advantage of type checking, modularization,
language evolution, ...

● hint: check implementation status, feature
completeness first!

Towards “continuous integration”

tools and frameworks: Jenkins, build-bot, git, gcov[r], …

● commit hooks, automated builds, notifications, ...

● test-driven development (turn bugs into test cases)

● automated unit tests for V&V and code coverage

● “release” management, issue tracker, ...

http://www.mcs.anl.gov/papers/P5022-0913.pdf

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Summary & Conclusions

Summary and some predictions (* to be challenged at ISSS 17)

Exaflops systems, O(100M $), are on the horizon, technology will “trickle down”

Petaflops, O(10M $), is about to become mainstream

Teraflops, O(1000 $), is available on a single chip (massive parallelism)

Implications and challenges for scientific application development:

there is no convenient way forward ← computing is power limited

the tools are already around (for the better or worse?)

● parallelization on multiple levels (e.g. SIMD with compiler or OpenMP pragmas)

● hybridization (e.g. with OpenMP within socket or node) ← flat MPI will not survive

● “accelerators” (GPU, MIC) ← plain multicore CPUs will not prevail

● hardware abstraction by OO techniques (C++, FORTRAN 200x, …) ← no single HW

applications have to implement resilience to hardware failures ← large, monolithic jobs will crash

(my own – somewhat pessimistic – view) ← HPC depends on mass-market evolution

● highly application specific, just scratched the surface here

ISSS-12, Prague, Jul 5, 2015

M. Rampp, MPCDF

Summary & Conclusions

Summary and some predictions (* to be challenged at ISSS 17)

Exaflops systems, O(100M $), are on the horizon, technology will “trickle down”

Petaflops, O(10M $), is about to become mainstream

Teraflops, O(1000 $), is available on a single chip (massive parallelism)

Implications and challenges for scientific application development:

there is no convenient way forward ← computing is power limited

the tools are already around (for the better or worse?)

● parallelization on multiple levels (e.g. SIMD with compiler or OpenMP pragmas)

● hybridization (e.g. with OpenMP within socket or node) ← flat MPI will not survive

● “accelerators” (GPU, MIC) ← plain multicore CPUs will not prevail

● hardware abstraction by OO techniques (C++, FORTRAN 200x, …) ← no single HW

applications have to implement resilience to hardware failures ← large, monolithic jobs will crash

(my own – somewhat pessimistic – view) ← HPC depends on mass-market evolution

● highly application specific, just scratched the surface here

… don't get obsessed by Flop/s and scaling curves!

“the cheapest (floating-point) operations are those that
you don't even execute” (R. Fischer, NEC)

time-to-solution vs. numerical and physical
accuracy matters! → clever algorithms

	Folie 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36

