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 Introduction

Distributed Deep Learning: Why bother ? 

● we use high-level frameworks like TensorFlow/Keras, PyTorch, … anyway ?
    → welcome to the jungle!

 

● applications in basic physics? is there large-scale data?
→ 

...

...
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 Introduction

Distributed Deep Learning: Why bother ? 

● we use high-level frameworks like TensorFlow/Keras, PyTorch, … anyway ?
    → welcome to the jungle!

 

● applications in basic physics? is there large-scale data?
→ 

Aims and claims of this introductory lecture:

→ sketch fundamentals of parallelizing artificial neural network (ANN) computations
→ understand challenges and limitations
→ make the connection to high-performance computing (HPC)
→ provide orientation in the (rapidly evolving) jungle of methodologies and software 
→ starting point for mastering non-standard applications 

→ this lecture is not: 
● an introduction to deep learning: familiarity with the basics of ANN is assumed
● a TensorFlow tutorial
● specific to materials science
● presenting novel concepts or ideas

...

...
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ANN basics

● “architecture” of an ANN (MLP)

● “training”: optimization via stochastic gradient descent (SGD), taking 
(small, |B|=1) batches of data (B) to iteratively update the weights w in 
order to minimize the prediction error (“loss” function) 

● “inference”: use the “trained model” {wt=final} as interpolator for new (yet 
unseen) data

→ time consuming, requires HPC   => exploit parallelism

image: arXiv:1903.11314
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 Types of parallelism in ANN

Data parallelism:

● model (all ANN parameters) is replicated 
 across all “workers” (PEs: CPUs, GPUs)

●  training data is divided across workers  
=> speedup with increasing number of workers expected
=> synchronization mechanism required

● limitations: entire model has to fit into memory
enough training data to keep multiple workers busy 

● conceptually straightforward (corresponds to a domain-cloning concept in HPC)

● most popular in prototypical ANN application domains (Facebook et al.) where 
huge amounts of training data are available

image: arXiv:1903.11314
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Model parallelism:

● model (all parameters) is divided 
 across all workers (CPUs, GPUs, nodes, …)
=> speedup with increasing number of workers expected (training only)
=> memory requirements per worker/node are relaxed
=> synchronization mechanism required

● limitations:  how to achieve speedup in inference stage ?

● conceptually more challenging (corresponds to a domain-decomposition 
concept in HPC)

● not yet commonly supported/applied, but necessary for to fit huge models in 
memory of commodity HPC clusters

 Types of parallelism in ANN

image: arXiv:1903.11314
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+ Hybrid parallelism: combination of model and data parallelism
+ ...

+ Hyperparameter optimization:

● run many independent trainings of the same network to tune network 
hyperparameters (mini-batch size, number of epochs, learning rate, ...)

● conceptually trivial (embarrasingly parallel, formally 100% parallel efficiency)

● to be practically efficient requires good optimization strategies and workflow 
management

→ software tool Hyperopt: Distributed Asynchronous Hyper-parameter 
Optimization (https://github.com/hyperopt/hyperopt)

→ implemented on MPCDF HPC systems (slurm integration, mongoDB)

 Types of parallelism in ANN
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Data-parallelism in ANN training:

● “strong”  scaling vs. “weak” scaling 

● A basic example with Tensorflow/Keras/Horovod
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(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

Terminology:
Batch: amount of data items processed for each model update

Batch Gradient Descent:         batch size = size of training data set
Stochastic Gradient Descent: batch size = 1 (data item)
Mini-Batch Gradient Descent: 1 < batch size < size of training set

typically: 128, 256, …

→ size of mini batch determines convergence properties and model 
performance (“generalizability”)

ANN training: terminology
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(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

Processing time on 1 PE (e.g. 1 GPU)

ANN training: data parallelism

….        weight updates:

Σ Σ



M. Rampp & A. Marek, MPCDF

(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

ΣΣΣΣΣΣΣ

GPU 1

GPU 2

Processing time on 1 PE (e.g. 1 GPU)Σ

ANN training: data parallelism

Processing time on 2 PEs (e.g 2 GPUs)
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(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

ΣΣΣΣΣΣΣ

GPU 1

GPU 2

Processing time on 1 PE (e.g. 1 GPU)Σ

ANN training: data parallelism

}
            

       processor-local sums

sum over processors (PEs)

Processing time on 2 PEs (e.g 2 GPUs)
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(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

ΣΣΣΣΣΣΣ

GPU 1

GPU 2

Processing time on 1 PE (e.g. 1 GPU)

“Strong scaling”:
Compute “exactly” the same thing 
but using more compute 
resources (PEs) and less time

Fundamental limit: size of mini 
batch/number of PEs > 1 

Practical limit: ~ 16...32 PEs

Σ

ANN training: data parallelism

Processing time on 2 PEs (e.g 2 GPUs)
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(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

ΣΣΣΣΣΣΣ

GPU 1

GPU 2

Processing time on 1 PE (e.g. 1 GPU)Σ

ANN training: data parallelism

● communication & synchronization

● communication/computation ratio   
increases with number of PEs

=> parallelization overhead may     
     dominate at large scale

Processing time on 2 PEs (e.g 2 GPUs)
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(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

ΣΣΣ

Processing time on 2 PEs (e.g 2 GPUs)

GPU 1

GPU 2

Processing time on 1 PE (e.g. 1 GPU)

“Weak scaling”:
Keep the size of the PE-local datasets 
constant(*) while increasing  the number of 
PEs → “Large mini batch SGD”

Fundamental limit: size of entire data 
set/number of PEs > 1 

* effective increase of mini batch size is 
compensated by  a scaling of the learning rate to 
maintain convergence properties (arXiv:1706.02677)

Σ

ANN training: data parallelism
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(random) selection of mini batches of data

size of training data set (“batch”), defines one “epoch” 
data item

mini 
batch

ΣΣΣ

Processing time on 2 PEs (e.g 2 GPUs)

GPU 1

GPU 2

Processing time on 1 PE (e.g. 1 GPU)

increase of global mini batch size !

● may alter convergence properties

Σ

ANN training: data parallelism
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Data-parallel training of ANN

Linear scaling rule (Goyal et al. arXiv:1706.02677)

k steps with data size |B
j
| and learning rate η

<≈>
1 step with data size |B|=k*|B

j
|  and learning rate k*η

Large mini-batch SGD has become most popular (weak scaling is easier to achieve than 
strong scaling: less frequent communication and synchronization) but changes the 
statistical properties (convergence, generalizability) of the algorithm!

→ consistency/reproducibility? (trained model depends on size of the compute cluster!)
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Data-parallel training of ANN
R. de F. Cunha et al.: An argument in favor of strong scaling for 
deep neural networks with small datasets (arXiv:1807.09161)
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Data-parallel training of ANN
R. de F. Cunha et al.: An argument in favor of strong scaling for 
deep neural networks with small datasets (arXiv:1807.09161)
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R. de F. Cunha et al.: An argument in favor of strong scaling for 
deep neural networks with small datasets (arXiv:1807.09161)

“We believe some results reported in the 
literature may not transfer to problems that 
lack large amounts of data, and may be biased 
towards the ImageNet benchmark.” 
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Data-parallel training of ANN

Benchmarking ANN: what is the right metric? 

→time to solution !   = time to reach a specified accuracy (validation loss)

→ commonly used: images/second (= throughput)

→opens up many opportunities to 
    cheat (ourselves)

→watch out !   

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/
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Data-parallel training of ANN

Twelve ways to fool the masses … (by T. Hoefler)

1) Ignore accuracy when scaling up!

Our first guideline to report highest performance is seemingly one of the most common one. Scaling deep learning is 
very tricky because the best performing optimizer, stochastic gradient descent (SGD), is mostly sequential. Model 
parallelism can be achieved by processing the elements of a minibatch in parallel — however, the best size of the 
minibatch is determined by the statistical properties of the process and is thus limited. However, when one ignores the 
quality (or convergence in general), the model-parallel SGD will scale wonderfully to any size system out there! Weak 
scaling by adding more data can benefit this further, after all we can process all that data in parallel. In practice, 
unfortunately, test accuracy matters, not how much data one processed. One way around this may be to only report 
time for a small number of iterations because, at large scale, it’s too expensive to run to convergence, right?

2) Do not report test accuracy!

The SGD optimization method optimizes the function that the network represents to the dataset used for learning. This 
minimizes the so called training error. However, it is not clear whether the training error is a useful metric. After all, the 
network could just learn all examples without any capability to work on unseen examples. This is a classic case of 
overfitting. Thus, real-world users typically report test accuracy of an unseen dataset because machine learning is not 
optimization! Yet, when scaling deep learning computations, one must tune many so called hyperparameters (batch 
size, learning rate, momentum, …) to enable convergence of the model. It may not be clear whether the best setting of 
those parameters benefits the test accuracy as well. In fact, there is evidence that careful tuning of hyperparameters 
may decrease the test accuracy by overfitting to a specific problem.

3) Do not report all training runs needed to tune hyperparameters!

…
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Data-parallel training of ANN

Twelve ways to fool the masses … (by T. Hoefler)

9) Train on unreasonably large inputs!

This is my true favorite, the pinnacle of floptimization! It took me a while to recognize and it’s quite powerful. The image 
classification community is almost used to scaling down high-resolution images to ease training. After all, scaling to 
244×244 pixels retains most of the features and gains a quadratic factor (in the image width/hight) of computation time. 
However, such small images are rather annoying when scaling up because they require too little compute. Especially 
for small minibatch sizes, scaling is limited because processing a single small picture on each node is very inefficient. 
Thus, if flop/s are important then one shall process large, e.g., “high-resolution”, images. Each node can easily process 
a single example now and the 1,000x increase on needed compute comes nicely to support scaling and overall flop/s 
counts! A win-win unless you really care about the science done per cost or time. In general, when procesing very large 
inputs, there should be a good argument why — one teraflop compute per example may be excessive.

…

11) Minibatch sizing for fun and profit – weak vs. strong scaling.…

We all know about weak vs. strong scaling, i.e., the simpler case when the input size scales with the number of 
processes and the harder case when the input size is constant. At the end, deep learning is all strong scaling because 
the model size is fixed and the total number of examples is fixed. However, one can cleverly utilize the minibatch sizes. 
Here, weak scaling keeps the minibatch size per process constant, which essentially grows the global minibatch size. 
Yet, the total epoch size remains constant, which causes less iterations per epoch and thus less overall communication 
rounds. Strong scaling keeps the global minbatch size constant. Both have VERY different effects in convergence — 
weak scaling worsens convergence eventually because it reduces stochasiticity and strong scaling does not.

...
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Communication patterns

Image from henning.kropponline.de

Basic communication pattern: sum over all processors

Parameter server architecture (Distributed Tensorflow)

→ introduces communication bottleneck

processor-local sum

https://henning.kropponline.de/2017/03/19/distributing-tensorflow/
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Communication patterns

Basic communication pattern: MPI_Allreduce processor-local sum

De-centralized architecture based on the well-known Message Passing Interface (MPI), 
and its high-performance library and runtime implementations (OpenMPI, IntelMPI, ...)

Baidu-allreduce (2017): TensorFlow fork (https://github.com/baidu-research/baidu-allreduce)

Horovod (2018): “ring-allreduce”, integrates with TensorFlow (arXiv: 1802.05799)
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Communication patterns

Welcome to HPC ...
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Data parallel training with Horovod

Horovod (https://github.com/horovod/horovod) developed at Uber

Builds on the MPI communication API 
 
Supported frameworks:

● TensorFlow 
● Keras
● PyTorch
● MXNet

Execute with srun/mpirun/mpiexec/orterun  python ….
(convenience wrapper for OpenMPI: horovodrun ...)

https://www.mpcdf.mpg.de/services/computing/software/data-analytics/machine-learning-software

https://github.com/horovod/horovod
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Data parallel training with TF/Horovod
#!/usr/bin/env python
#-*- coding: utf-8 -*-

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import math
import tensorflow as tf

# Horovod:
import horovod.keras as hvd

# Horovod: initialize Horovod.
hvd.init()

# Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))

batch_size = 128
num_classes = 10

# Horovod: adjust number of epochs based on number of GPUs.
epochs = int(math.ceil(12.0 / hvd.size()))

# Input image dimensions
img_rows, img_cols = 28, 28

https://github.com/horovod/horovod
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Data parallel training with TF/Horovod

# The data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
 x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
 x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
 input_shape = (1, img_rows, img_cols)
else:
 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
 x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
 input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

https://github.com/horovod/horovod
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Data parallel training with TF/Horovod

# Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())

# Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=opt,
 metrics=['accuracy'])

callbacks = [
 # Horovod: broadcast initial variable states from rank 0 to all other processes.
 # This is necessary to ensure consistent initialization of all workers when
 # training is started with random weights or restored from a checkpoint.
 hvd.callbacks.BroadcastGlobalVariablesCallback(0),
]

# Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them.
if hvd.rank() == 0:
 callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5'))

model.fit(x_train, y_train,
 batch_size=batch_size,
 callbacks=callbacks,
 epochs=epochs,
 verbose=1,
 validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

https://github.com/horovod/horovod
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Benchmarking TensorFlow/Horovod
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tf_cnn_benchmark: training, multi−node, GPUs

→ scaling across nodes works efficiently

 

https://github.com/tensorflow/benchmarks
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Benchmarking TensorFlow/Horovod
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→ scaling across nodes works efficiently

→ GPUs provide significant speedup (wrt. CPU-only)
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TensorFlow 2.0 beta

towards native MPI support? Horovod? new API ?  obsoletes … ?
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Model-parallelism in ANN inference:

● an illustrative example from MRI
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 Distributed ANN inference

Automatic segmentation of 3D medical images 
MP Institute for Human Cognitive and Brain Sciences (Dept. N. Weiskopf) 

● Goal: use a (deep) CNN  to segment 3D data from histology samples
of brain tissue 

Our present knowledge of the cortical structure is based on the analysis of physical 2D sections .[…]
Now with the combination of novel 3D imaging techniques and advanced image analysis methods, such 
as deep neural networks, the study of the fully three-dimensional structure of the brain is within
Reach (K. Thierbach et al. 2019, publication in progress) 

Figure from Z. Akkus et al. 2017: Deep Learning for Brain MRI Segmentation: 
State of the Art and Future Directions
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 Distributed ANN inference

Automatic segmentation of 3D medical images 
MP Institute for Human Cognitive and Brain Sciences (Dept. N. Weiskopf) 

● Challenges: compute power and memory requirements in the inference step, due
to project requirements:

- a fully convolutional mixed-scale dense 
  convolutional neural network (MS-DNet) is used
  (100k parameters to train)

- training can be done on (small) data sets of 
 963 voxels on one GPU node

- inference is done on 2K x 1K x 1K voxels
  (estimate: needs 16 PFlop operations and 
   24 TB of memory in TensorFlow)

=> inference step must be parallelized over multiple nodes
=> standard setups with TensorFlow, PyTorch, … do not work, since they
     do not provide model-parallelism during inferencing

Figure from D.M.Pelt & J.A.Sethian, 2017, 
A mixed-scale dense convolutional neural 
network for image analysis
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 Distributed ANN inference

Automatic segmentation of 3D medical images 
MP Institute for Human Cognitive and Brain Sciences (Dept. N. Weiskopf) 

● Solution implemented at MPCDF:

- HPC approach of a “domain-decomposition”

- split the 3D data set in cubes of 1203 voxels
  (maximum fitting into memory of V100
   GPU); consider a configurable
  overlap between splitting

- process each cube independently with TensorFlow;
  take care of (partially) detected objects in the
  overlap region

- stitch all results to a final result of size 2K x 1K x 1K

=> “bookkeeping” of different inference jobs via SLURM job arrays
=> one batch of ca. 600 cubes can be processed in ~400 s on one GPU
=> we managed to run full problem in ca. 500 s on 16 compute nodes (32 GPUs)
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Relevance of distributed ANN computation

arXiv:1802.09941
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Relevance of distributed ANN computation

arXiv:1802.09941
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Relevance of distributed ANN computation

arXiv:1802.09941
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