YYasd MAx PLANCK
ﬂ COMPUTING &
DATA FACILITY

High-performance Data Analytics
Basic concepts of distributed deep learning

Data analytics
Artificial Intelligence

Image adapted from: arXiv:1903.11314

Acknowledgments:

Markus Rampp (markus.rampp@mpcdf.mpg.de)
Andreas Marek (andreas.marek@mpcdf.mpg.de)

Max Planck Computing and Data Facility (MPCDF)

BiGmax Summer School, Platja d’Aro/Spain, Sep 9-13, 2019

o9

I o®f
e MAX PLANCK
B l RESEARCH
NETWORK

l ' I O X on big-data-driven
materials science

* IPAM @UCLA: Long Program “Science at Extreme Scales: Where
Big Data Meets Large-Scale Computing”, 2018

 BiGmax

e L. Stanisic, N. Fabas, G. DiBernardo, J. Kennedy (MPCDF)

M. Rampp & A. Marek, MPCDF

C YEYasd MAX PLANCK
Introduction [coworne:

DATA FACILITY

Distributed Deep Learning: Why bother ?

* we use high-level frameworks like TensorFlow/Keras, PyTorch, . aanay ?

-~ welcome to the jungle! &
[d e Do

* applications in basic physics? is there large-scale data?

[N

Le?T
e MAX PLANCK
B I G RESEARCH
NETWORK

MAX e

TensorFlc

NOVEL MATERIALS DISCOVERY

M. Rampp & A. Marek, MPCDF

E Yt d MAax PLANCK
Introduction Compure &
DATA FACILITY

Distributed Deep Learning: Why bother ?

* we use high-level frameworks like TensorFlow/Keras, PyTorch, . . anyway ?
— welcome to the jungle! &

Tensor

MAX PLANCK
I RESEARCH
NETWORK EEE
O

Max:.

NOVEL MATERIALS DISCOVERY

Aims and claims of this introductory lecture:

— sketch fundamentals of parallelizing artificial neural network (ANN) computations

— understand challenges and limitations
make the connection to high-performance computing (HPC)
provide orientation in the (rapidly evolving) jungle of methodologies and software

starting point for mastering non-standard applications

Ll

— this lecture is not:
* an introduction to deep learning: familiarity with the basics of ANN is assumed

* a TensorFlow tutorial
 specific to materials science
* presenting novel concepts or ideas

M. Rampp & A. Marek, MPCDF

ANN basics ?;”Sépﬁif&ci

DATA FACILITY

« “architecture” of an ANN (MLP)

Input
layer

Hidden layers
image: arXiv:1903.11314

* “training”: optimization via stochastic gradient descent (SGD), taking
(small, |B|=1) batches of data (B) to iteratively update the weights w in
order to minimize the prediction error (“loss” function)

1
W41 = Wy — 77@ Z Vi(z,wy)
reB

— time consuming, requires HPC => exploit parallelism

« “inference”: use the “trained model” {w.,..} as interpolator for new (yet
unseen) data

M. Rampp & A. Marek, MPCDF

Types of parallelism in ANN ?;”SJPE#NZC;

DATA FACILITY

Data parallelism:

* model (all ANN parameters) is replicated

across all “workers” (PEs: CPUs, GPUs) parameter synchronization
image: arXiv:1903.11314

* training data is divided across workers
=> speedup with increasing number of workers expected
=> synchronization mechanism required

* limitations: entire model has to fit into memory
enough training data to keep multiple workers busy

« conceptually straightforward (corresponds to a domain-cloning concept in HPC)

* most popular in prototypical ANN application domains (Facebook et al.) where
huge amounts of training data are available

M. Rampp & A. Marek, MPCDF

Types of parallelism in ANN E”SJPE#NZC;

DATA FACILITY

Model parallelism:

parameter synchronization

* model (all parameters) is divided
across all workers (CPUs, GPUs, nodes, ...)
=> speedup with increasing number of workers expected (training only)
=> memory requirements per worker/node are relaxed
=> synchronization mechanism required

image: arXiv:1903.11314

* limitations: how to achieve speedup in inference stage ?

e conceptually more challenging (corresponds to a domain-decomposition
concept in HPC)

* not yet commonly supported/applied, but necessary for to fit huge models in
memory of commodity HPC clusters

M. Rampp & A. Marek, MPCDF

Types of parallelism in ANN E”SJPE#N”;;

DATA FACILITY

+ Hybrid parallelism: combination of model and data parallelism
+ ...
+ Hyperparameter optimization:

* run many independent trainings of the same network to tune network
hyperparameters (mini-batch size, number of epochs, learning rate, ...)

e conceptually trivial (embarrasingly parallel, formally 100% parallel efficiency)
* to be practically efficient requires good optimization strategies and workflow

management

— software tool Hyperopt: Distributed Asynchronous Hyper-parameter
Optimization (https://github.com/hyperopt/hyperopt) =

- implemented on MPCDF HPC systems (slurm integration, mongoDB)

M. Rampp & A. Marek, MPCDF

Y Yesd MAX PLANCK
ﬂ COMPUTING &
DATA FACILITY

Data-parallelism in ANN training:
e “strong” scaling vs. “weak” scaling

* A Dbasic example with Tensorflow/Keras/Horovod

M. Rampp & A. Marek, MPCDF

ANN training: terminology W] coeorne:

DATA FACILITY

111] H 1 N

data item

(random) selection‘of mini batche.

mini

ba’[Ch\...

Terminology:
Batch: amount of data items processed for each model update

Batch Gradient Descent: batch size = size of training data set
Stochastic Gradient Descent: batch size = 1 (data item)
Mini-Batch Gradient Descent: 1 < batch size < size of training set

typically: 128, 256, ...

— size of mini batch determines convergence properties and model
performance (“generalizability”)

M. Rampp & A. Marek, MPCDF

ANN training: data parallelism W] cowonc:

DATA FACILITY

111] H 1 N

data item

(random) selection‘of mini batche-‘

mini
batCh\...
Processing time on 1 PE (e.q. 1 GPU)
2 2

weight updateS'

Wt41 = W — 1) |B|ZVZCEU},5

M. Rampp & A. Marek, MPCDF

ANN training: data parallelism W] cowonc:

DATA FACILITY

111] H 1 N

data item

(random) selection‘of mini batche.

mini

ba'[Ch\...

> X X X zZ X Z ZProcessmgtlmeoanE(e.g.1GPU)

>

M. Rampp & A. Marek, MPCDF Processing time on 2 PEs (e.g 2 GPUSs)

GPU 1

GPU 2

ANN training: data parallelism W] cowonc:

DATA FACILITY

111] H 1 N

data item

S hacaf -

(random) selection‘of mini batche »efﬁ!.

mini

batCh\...

> X X X zZ X Z ZProcessmgtlmeoanE(e.g.1GPU)

I sum over pro&e(ssors (PESs)
Wiy = Wy — B/|E<Zlewt)
= reB;
sumsS
}m:a\
>

M. Rampp & A. Marek, MPCDF Processing time on 2 PEs (e.g 2 GPUSs)

GPU 1

GPU 2

ANN training: data parallelism W] cowonc:

DATA FACILITY

111] H 1 N

data item

(random) selection‘of mini batche.

mini

batCh\...

> X X X zZ X Z ZProcessmgtlmeoanE(e.g.1GPU)

“Strong scaling”:
Compute “exactly” the same thing
but using more compute
resources (PEs) and less time
Fundamental limit: size of mini
batch/number of PEs > 1
Practical limit: ~ 16...32 PEs

L

M. Rampp & A. Marek, MPCDF Processing time on 2 PEs (e.g 2 GPUSs)

GPU 1

GPU 2

ANN training: data parallelism W] cowonc:

DATA FACILITY

111] H 1 N

data item

W-

(random) selection‘of mini batches-e

mini

batCh\...

> X X X zZ X Z ZProcessmgtlmeoanE(e.g.1GPU)

I * communication & synchronization
* communication/computation ratio
increases with number of PEs
=> parallelization overnead may
dominate at large scale
>

M. Rampp & A. Marek, MPCDF Processing time on 2 PEs (e.g 2 GPUSs)

GPU 1

GPU 2

ANN training: data parallelism W] cowonc:

DATA FACILITY

111] H 1 N

> > > 2 Processing time on 1 PE (e.g. 1 GPU)

“Weak scaling”:

Keep the size of the PE-local datasets
constant(*) while increasing the number of
PEs — “Large mini batch SGD”

GPU 1

Fundamental limit: size of entire data
set/number of PEs > 1

GPU 2 * effective increase of mini batch size is
compensated by a scaling of the learning rate to
maintain convergence properties (arXiv:1706.02677)

M. Rampp & A. Marek, MPCDF Processing time on 2 PEs (e.g 2 GPUSs)

ANN training: data parallelism W] cowonc:

DATA FACILITY

111] H 1 N

> > > 2 Processing time on 1 PE (e.g. 1 GPU)
GPU 1

increase of global mini batch size !
* may alter convergence properties
>

M. Rampp & A. Marek, MPCDF Processing time on 2 PEs (e.g 2 GPUSs)

Data-parallel training of ANN B5] cowornce.

DATA FACILITY

Large mini-batch SGD has become most popular (weak scaling is easier to achieve than
strong scaling: less frequent communication and synchronization) but changes the
statistical properties (convergence, generalizability) of the algorithm!

— consistency/reproducibility? (trained model depends on size of the compute cluster!)

Linear scaling rule (Goyal et al. arXiv:1706.02677)

1 N\ "\
Wt — Wt — 77@ >4 >4 vz(mawH—j)
J]<k’ CUGBj

k steps with data size |Bj| and learning rate n
<=>
1 step with data size |B|:k*|B.| and learning rate k*n

Wiyl = W — k77 > > Vi(x,wy).

j<k € B

M. Rampp & A. Marek, MPCDF

Data-parallel training of ANN B5] cowornce.

DATA FACILITY

ial i : P R. de F. Cunha et al.: An argument in favor of strong scaling for
Potential issues with Iarge mini batches deep neural networks with small datasets (arXiv:1807.09161)

“weak scaling” of per-proc. mini-batch size “strong scaling” of per-proc. mini-batch size
— 2énue — 1o
0.005 -~ 4 GPUs 0.005 - 2 GPUs
—— 4GPUs
—— 8GPUs sGPUS
o 0004 - —— 16 GPUs , 0.004 - —— 16 GPUs
o —_—
S 32 GPUs 2 326PUS
0.003 - 0.003 -
0.002 -~ 0.002 -

T 1 T T T T
I I I I I I I
0 1000 /6000 Ti?:;)(()s) 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

/ Time (s)
///
/
i e+~ Strong scaling no convergence for a
oor scalabilit >000 . : e
P y Weak scaling given accuracy (“loss”)
= 4000 - -® Linear scaling rule
Py 3000 - —e— Linear scaling rule + warmup
£
= 2000 -
1000 - B
12 4 8 16 32
of GPUs

M. Rampp & A. Marek, MP(

Data-parallel training of ANN B5] cowornce.

DATA FACILITY

ial i : P R. de F. Cunha et al.: An argument in favor of strong scaling for
Potential issues with Iarge mini batches deep neural networks with small datasets (arXiv:1807.09161)

“weak scaling” of per-proc. mini-batch size “We believe some results reported in the

— 1GPU literature may not transfer to problems that
0.005 - 2 GPUs lack large amounts of data, and may be biased
I towards the ImageNet benchmark.”
2 0.004 — 16 GPUs
At —— 32GPUs 8 30GPUS
0.003 - 0.003 -
0.002 0.002 -
0 1000 ,ﬂOOO _3000 4000 5000 6000 (I) 10100 ZOIOO SOIOO 40100 50100 GOIOO
Time (s) .
Time (s)
o 5000 - - Strong scaling no convergence for a

poor scalability Weak scaling given accuracy (“loss”)

= 4000 - - @ Linear scaling rule -

o i —e— Linear scaling rule + warmup 7

2 3000 ~

™ 2000 -

1000 - e G
] e .
12 4 8 16 32
of GPUs

M. Rampp & A. Marek, MP(

Data-parallel training of ANN B5] cowornce.

DATA FACILITY

Benchmarking ANN: what is the right metric?
—time to solution ! = time to reach a specified accuracy (validation loss)
- commonly used: images/second (= throughput)

o — Twelve ways to fool the masses when reporting performance of deep
— 0pens up many opportunities to learning workloads

Cheat (OurselveS) & blog & Uncategorized

—watch out !

[N

Twelve ways to fool the masses when reporting performance of deep
learning workloads

Torsten Hoefler

Due to it's wide-spread success in many hard machine learning tasks, deep learning quickly became one of the most
important demanding compute workloads today. In fact, much of the success of deep leaming stems from the high compute

https://htor.inf.ethz.ch/blog/index.php/2018/11/08/twelve-ways-to-fool-the-masses-when-reporting-performance-of-deep-learning-workloads/

M. Rampp & A. Marek, MPCDF

Data-parallel training of ANN B5] cowornce.

DATA FACILITY

Twelve ways to fool the masses ... (by T. Hoefler)

1) Ignore accuracy when scaling up!

Our first guideline to report highest performance is seemingly one of the most common one. Scaling deep learning is
very tricky because the best performing optimizer, stochastic gradient descent (SGD), is mostly sequential. Model
parallelism can be achieved by processing the elements of a minibatch in parallel — however, the best size of the
minibatch is determined by the statistical properties of the process and is thus limited. However, when one ignores the
guality (or convergence in general), the model-parallel SGD will scale wonderfully to any size system out there! Weak
scaling by adding more data can benefit this further, after all we can process all that data in parallel. In practice,
unfortunately, test accuracy matters, not how much data one processed. One way around this may be to only report
time for a small number of iterations because, at large scale, it's too expensive to run to convergence, right?

2) Do not report test accuracy!

The SGD optimization method optimizes the function that the network represents to the dataset used for learning. This
minimizes the so called training error. However, it is not clear whether the training error is a useful metric. After all, the
network could just learn all examples without any capability to work on unseen examples. This is a classic case of
overfitting. Thus, real-world users typically report test accuracy of an unseen dataset because machine learning is not
optimization! Yet, when scaling deep learning computations, one must tune many so called hyperparameters (batch
size, learning rate, momentum, ...) to enable convergence of the model. It may not be clear whether the best setting of
those parameters benefits the test accuracy as well. In fact, there is evidence that careful tuning of hyperparameters
may decrease the test accuracy by overfitting to a specific problem.

3) Do not report all training runs needed to tune hyperparameters!

M. Rampp & A. Marek, MPCDF

Data-parallel training of ANN B5] cowornce.

DATA FACILITY

Twelve ways to fool the masses ... (by T. Hoefler)

9) Train on unreasonably large inputs!

This is my true favorite, the pinnacle of floptimization! It took me a while to recognize and it's quite powerful. The image
classification community is almost used to scaling down high-resolution images to ease training. After all, scaling to
244x244 pixels retains most of the features and gains a quadratic factor (in the image width/hight) of computation time.
However, such small images are rather annoying when scaling up because they require too little compute. Especially
for small minibatch sizes, scaling is limited because processing a single small picture on each node is very inefficient.
Thus, if flop/s are important then one shall process large, e.g., “high-resolution”, images. Each node can easily process
a single example now and the 1,000x increase on needed compute comes nicely to support scaling and overall flop/s
counts! A win-win unless you really care about the science done per cost or time. In general, when procesing very large
inputs, there should be a good argument why — one teraflop compute per example may be excessive.

11) Minibatch sizing for fun and profit — weak vs. strong scaling....

We all know about weak vs. strong scaling, i.e., the simpler case when the input size scales with the number of
processes and the harder case when the input size is constant. At the end, deep learning is all strong scaling because
the model size is fixed and the total number of examples is fixed. However, one can cleverly utilize the minibatch sizes.
Here, weak scaling keeps the minibatch size per process constant, which essentially grows the global minibatch size.
Yet, the total epoch size remains constant, which causes less iterations per epoch and thus less overall communication
rounds. Strong scaling keeps the global minbatch size constant. Both have VERY different effects in convergence —
weak scaling worsens convergence eventually because it reduces stochasiticity and strong scaling does not.

M. Rampp & A. Marek, MPCDF

. . Wasd MAx PLANCK
Communication patterns B5] corc

DATA FACILITY

Basic communication pattern: sum over all Processors processor-local sum

Wi = Wy — 1 ‘[i,,‘ Z (Z Vi(x wt))

Data Parallelism
Parameter server architecture (Distributed Tensorflow) Parameter Servers P =’ + AP
| o [CITTITIIrrrl
— Introduces communication bottleneck ' \ H
Model (O r'i‘i I—m‘ DO (oo)
Repicas ([() | (00/ B0 ---

Data

Tt f t

M. Rampp & A. Marek, MPCDF Image from henning.kropponline.de

https://henning.kropponline.de/2017/03/19/distributing-tensorflow/

. . Wasd MAx PLANCK
Communication patterns B5] corc

DATA FACILITY

Basic communication pattern: MPI_Allreduce processor-local sum

Wip1 = Wi — 1N \lfi”\ Z (Z Vi(x wt)>

De-centralized architecture based on the well-known Message Passing Interface (MPI),
and its high-performance library and runtime implementations (OpenMPI, IntelMPI, ...)

Baidu-allreduce (2017): TensorFlow fork (https://github.com/baidu-research/baidu-allreduce)

Horovod (2018): “ring-allreduce”, integrates with TensorFlow (arXiv: 1802.05799)

Worker C Worker B
|sz7‘sls|34| Isu|42|77|

Worker C

2 |“°| 7 |]
M. Rampp & A. Marek, MPCDF

YYasd MAx PLANCK

Communication patterns 2] covrurnc s

DATA FACILITY

Welcome to HPC ...

@ |_MPI_ADJUST Family Env: x

€« > Ccn

@ https://software.intel.com/en-us/mpi-developer-reference-linux-i-mpi-adjust-family-environment-variables

Environment Variables, Collective Operations, and Algorithms
Search document...
Algorithms
Contents
> Introduction I _MPI_ADJUST ALLGATHER MPI_Allgather 1. Recursive doubling
2. Bruck’
» Command Reference fuees
3. Ring
~ Environment Variable 4. Topol Gath + Beast
Reference . Topology aware Gatherv cas
- . 5. Knomial
Compilation Environment
Variables
Hydra Environment I_MPI_ADJUST ALLGATHERV MPI Allgatherv 1. Recursive doubling
Variables 2 Bruck's
I_MPI_ADJUST Family 3. Ring
Environment Variables 4. Topology aware Gatherv + Beast
» Tuning Environment
Variables
@_ADJUST_ALLREDUCE MPI_Al@ 1. Recursive doubling
> Process Pinning 2. Rabenssifner's
> Environment Variables for 3 Reduce + Bcast
Fabrics Control
4. Topology aware Reduce + Bcast
Environment Variables for 5 Binomial gather + scatter
Memory Policy Control . .
6. Topology aware binominal gather
Environment Variables for + scatter
Asynchronous Progress 7 _Shumilin's ring
Control
Environment Variables for ST TR
Multi-EP
10. Topology aware SHM-based flat
Oth_er Environment 11. Topology aware SHM-based
Variables Knomial
» Miscellaneous 12. Topology aware SHM-based
« Prev Hydra Environment Variables Tuning Environment Variables Next »

M. Rampp & A. Marek, MPCDF

Data parallel training with Horovod B5] cowornce.

DATA FACILITY

Horovod (https://github.com/horovod/horovod) developed at Uber

Builds on the MPI communication API

Supported frameworks:

* TensorFlow
* Keras

* PyTorch

* MXNet

Execute with srun/mpirun/mpiexec/orterun python
(convenience wrapper for OpenMPI: horovodrun ...)

https://www.mpcdf.mpg.de/services/computing/software/data-analytics/machine-learning-software

M. Rampp & A. Marek, MPCDF

https://github.com/horovod/horovod

Data parallel training with TF/Horovod & comwue-

DATA FACILITY

#!/usr/bin/env python
#-*- coding: utf-8 -*-

from __ _future__ import print_function

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

import math

import tensorflow as tf

Horovod:
import horovod.keras as hvd

Horovod: initialize Horovod.
hvd.init()

Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()

config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
K.set_session(tf.Session(config=config))

batch_size = 128
num_classes = 10

Horovod: adjust number of epochs based on number of GPUs.
epochs = int(math.ceil(12.0 / hvd.size()))

Input image dimensions
img_rows, img_cols = 28, 28

https://github.com/horovod/horovod
M. Rampp & A. Marek, MPCDF

Data parallel training with TF/Horovod & comwue-

DATA FACILITY

The data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
X_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
X_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
X_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
Xx_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

X_train = x_train.astype('float32')
x_test = x_test.astype('float32')
X_train /= 255

X_test /= 255

print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

Convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

https://github.com/horovod/horovod
M. Rampp & A. Marek, MPCDF

Data parallel training with TF/Horovod & comwue-

DATA FACILITY

Horovod: adjust learning rate based on number of GPUs.
opt = keras.optimizers.Adadelta(1.0 * hvd.size())

Horovod: add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer (opt)

model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=opt,
metrics=['accuracy'])

callbacks = [

Horovod: broadcast initial variable states from rank © to all other processes.
This is necessary to ensure consistent initialization of all workers when

training is started with random weights or restored from a checkpoint.
hvd.callbacks.BroadcastGlobalvVariablesCallback(0),

]

Horovod: save checkpoints only on worker O to prevent other workers from corrupting them.
if hvd.rank() == 0:
callbacks.append(keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5"'))

model.fit(x_train, y_train,
batch_size=batch_size,

callbacks=callbacks,

epochs=epochs,

verbose=1,

validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])

print('Test accuracy:', score[1])

https://github.com/horovod/horovod
M. Rampp & A. Marek, MPCDF

Benchmarking TensorFlow/Horovod W] coworne:

DATA FACILITY

tf_cnn_benchmark: training, multi-node, GPUs

COBRA with 2 x V100

4000 4
3000 —
©
2 20004 e &
(@)
1000 921 model
E . vggl6
o 4000 . inception3
S 3000 .
e 3
= 2000 - e =
1000 il o il calt il
O -]]]]]
Ref 1 2 4 8

Nodes

— scaling across nodes works efficiently

M. Rampp & A. Marek, MPCDF

Benchmarking TensorFlow/Horovod B5] cowornce.

DATA FACILITY

tf_cnn_benchmark: training, inception3, multi-node, CPU vs GPU

COBRA

4000 A

3000 -

zedy

2000 1

:ﬂjjj_l

. Intel Skylake
B +2xvi00

=
o
o
o

o

Images/Second
S
o
o
o

3000 -

2000 -
0 -

Nodes

otrd)

— scaling across nodes works efficiently

— GPUs provide significant speedup (wrt. CPU-only)

M. Rampp & A. Marek, MPCDF

YYasd MAx PLANCK

TensorFlow 2.0 beta 2] cowrurmc s

DATA FACILITY

¢ Distributed training in Tens x

&« C Y @& https//www.tensorflow.org/beta/quide/distribute_strategy a % 010
1 TensorFlow Install Learn ~ APl + Resources ~ Community More « O\ Search Language ~ GitHub Signin
Variables tf.distribute.Strategy intendg)to cover a number of use cases along different axes. Some of these
AutoGraph inati orted and others will be added in the future. Some of these axes are: Contents

Overview
Keras » Synchronous vs asynchronous training: These are two common ways of distributing training with data Types of
Keras overview parallelism. In sync training, all workers train over different slices of input data in sync, and aggregating strategies
Keras functional API gradients at each step. In async training, all workers are independently training over the input data and MirroredStrat..
Train and evaluate updating variables asynchronously. Typically sync training is supported via all-reduce and async through CentralStorag...
Write layers and models from scratch parameter server architecture. MultiWorkerM..
TPUStrategy
Save and serialize models « Hardware platform: Users may want to scale their training onto multiple GPUs on one machine, or multiple ParameterSer...
Recurrent neural network API machines in a network (with 0 or more GPUs each), or on Cloud TPUs. Using
Masking and padding tf.distribute.Stra...
Write custom callbacks In order to support these use cases, we have 5 strategies available. In the next section we will talk about which with Keras
of these are supported in which scenarios in TF 2.0-beta at this time. Here is a quick overview: gg}(’fned
Accelerators now?
Distribution strategy Training Mirroredstrategy TPUStrategy MultiWorkerMirroredStrategy CentralStorageStrategy ParameterServerstra Examples and
Using GPU API Tutorials
Keras Supported Support Experimental support Experimental support Supported planned pi ‘(L;.St:lri]s?tributesna...
Data input pipelines API planned in 2.0 with custom
tf.data Overview 2.0RC training loops
Performance))) What's
Custom Experimental Experimental Support planned post 2.0 RC Support planned in 2.0 No support yet supported
training support support RC now?
Serialization loop Examples and
Checkpoints) o o o o o Tutorials
Saved models Estimator Limited Support Limited Limited Support Limited Support Limited Support Using
API Support tf.distribute Stra...
with Estimator
Low Level APIs What's
Reggedtensors MirroredStrategy o
Fyamnlas anrd
Mise tf.distribute.MirroredStrateqy supports synchronous distributed training on multiple GPUs on one z

towards native MPI support? Horovod? new APl ? obsoletes ... ?
M. Rampp & A. Marek, MPCDF

YYesid MAX PLANCK
E COMPUTING &
DATA FACILITY

Model-parallelism in ANN inference:

* an illustrative example from MRI

M. Rampp & A. Marek, MPCDF

Distributed ANN inference [coworne:

DATA FACILITY

Automatic segmentation of 3D medical images
MP Institute for Human Cognitive and Brain Sciences (Dept. N. Weiskopf)

e Goal: use a (deep) CNN to segment 3D data from histology samples
of brain tissue

Our present knowledge of the cortical structure is based on the analysis of physical 2D sections .[...]
Now with the combination of novel 3D imaging techniques and advanced image analysis methods, such
as deep neural networks, the study of the fully three-dimensional structure of the brain is within

Reach (K. Thierbach et al. 2019, publication in progress)

MRI __ Semantic-wise CNN Segmentation

Input Convolutional M Deconvolutional
M Activation M Pooling ™ Unpooling Il Output

Figure from Z. Akkus et al. 2017: Deep Learning for Brain MRl Segmentation:
State of the Art and Future Directions

M. Rampp & A. Marek, MPCDF

Distributed ANN inference [coworne:

DATA FACILITY

Automatic segmentation of 3D medical images
MP Institute for Human Cognitive and Brain Sciences (Dept. N. Weiskopf)

* Challenges: compute power and memory requirements in the inference step, due
to project requirements:

2 Z y
- a fully convolutional mixed-scale dense i s S ‘ Y [

convolutional neural network (MS-DNet) is used
(100k parameters to train)

- training can be done on (small) data sets of N
962 voxels on one GPU node

D Feature map
channel

= 3x3dilated

- inference is done on 2K x 1K x 1K voxels
(estimate: needs 16 PFlop operations and
24 TB of memory in TensorFlow)

— 1x1 convolution

Figure from D.M.Pelt & J.A.Sethian, 2017,
A mixed-scale dense convolutional neural
network for image analysis

=> inference step must be parallelized over multiple nodes
=> standard setups with TensorFlow, PyTorch, ... do not work, since they
do not provide model-parallelism during inferencing

M. Rampp & A. Marek, MPCDF

Distributed ANN inference [coworne:

DATA FACILITY

Automatic segmentation of 3D medical images
MP Institute for Human Cognitive and Brain Sciences (Dept. N. Weiskopf)

 Solution implemented at MPCDF:

- HPC approach of a “domain-decomposition”

- split the 3D data set in cubes of 120° voxels
(maximum fitting into memory of V100
GPU); consider a configurable
overlap between splitting

D Feature map
channel

— 3x3dilated

- process each cube independently with TensorFlov
take care of (partially) detected objects in the
overlap region

— 1x1 convolution

- stitch all results to a final result of size 2K x 1K x 1K
=> “bookkeeping” of different inference jobs via SLURM job arrays

=> one batch of ca. 600 cubes can be processed in ~400 s on one GPU
=> we managed to run full problem in ca. 500 s on 16 compute nodes (32 GPUSs)

M. Rampp & A. Marek, MPCDF

Relevance of distributed ANN computation &z

DATA FACILITY

Bl Single Node Multiple Nodes
100

80 1

60

40

20 - I I
0

Pre- 2010 2011 2012 2013 2014 2015 2016 2017-
2010 Present
Year

Reported Experiments [%]

arxiv:1802.09941

M. Rampp & A. Marek, MPCDF

Bl Single Node Multiple Nodes
100
S
— 80 -
2] -
o —o— Median 25th/75th Percentile ---- Min/Max
£ 601
| .
S | v
X 10000 - . /
L] Titan rcom r 7
W 40 1. . . tan Supercompute y
g " 1\ DistBelief J
] . y
o) ("] i \ . /
S 20 g 1000 N Project Adam /
2 vl]
o i
0 5 100 -
Pre- 2010 219]
2010 £ 1
2 |
10‘E
1 T T T T T T
Pre- 2013 2014 2015 2016 2017-
2013 Present
Year

arxiv:1802.09941

M. Rampp & A. Marek, MPCDF

asid MAX PLANCK

Relevance of distributed ANN computation &

DATA FACILITY

Bl Single Node

Multiple Nodes

and MAX PLANCK

Relevance of distributed ANN computation & e

DATA FACILITY

100
S
— 80 -
2] -
) —o— Median 25th/75th Percentile --=- Min/Max
E 60
| .
8 | v
x 10000 A . f
|_u] /
W 40 . . . Titan Supercomputer y
O 1 DistBelief /
= n 1 * //
o S] : ‘
8 20- S 1000E ’PrOJectAdam y
o % s MPI MapReduce Sockets
Pre- 2010 20 ;
2010 £ 18 -
= |
Z 0] -7 L 16
3 Q
] g 141]
1 o 12-
s 201.%
re- 10 -
2013 -
K] 8 -
)
5 6
o
@ 4
2.] .
_ 0__— -
arXiv:1802.09941 Pre- 2013 2014 2015 2016 2017-
2013 Present
Year

M. Rampp & A. Marek, MPCDF

YYasd MAX PLANCK
References Eore

DATA FACILITY

T. Ben-Nun & T. Hoefler: Demystifying Parallel and Distributed Deep Learning: An In-
Depth Concurrency Analysis (arXiv:1802.09941)

 T.Linetal.: Don't Use Large Mini-Batches, Use Local SGD (arXiv:1808.07217)

* R. de Cunha et al..: An argument in favor of strong scaling for deep neural networks
with small datasets (arXiv:1807.09161)

* R. Mayer & H.-A. Jacobsen: Scalable Deep Learning on Distributed Infrastructures:
Challenges, Techniques and Tools (arXiv:1903.11314)

* P. Sun et al.: Optimizing Network Performance for Distributed DNN Training on GPU
Clusters: ImageNet/AlexNet Training in 1.5 Minutes (arXiv:1902.06855)

K. Chahal et al.: A Hitchhiker’s Guide On Distributed Training of Deep Neural
Networks (arXiv:1810.11787)

 A. Sergeev & M. Del Balso: Horovod: fast and easy distributed deep learning in
TensorFlow (arXiv:1802.05799)

M. Rampp & A. Marek, MPCDF

	Folie 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

